翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fifth Generation Computer Systems project : ウィキペディア英語版
Fifth generation computer
The Fifth Generation Computer Systems project (FGCS) was an initiative by Japan's
Ministry of International Trade and Industry, begun in 1982, to create a computer using massively parallel computing/processing. It was to be the result of a massive government/industry research project in Japan during the 1980s. It aimed to create an "epoch-making computer" with-supercomputer-like performance and to provide a platform for future developments in artificial intelligence. There was also an unrelated Russian project also named as fifth-generation computer (see Kronos (computer)).
In his "Trip report" paper,〔Shapiro, Ehud Y. "The fifth generation project—a trip report." Communications of the ACM 26.9 (1983): 637-641.〕 Prof. Ehud Shapiro (which focused the FGCS project on concurrent logic programming as the software foundation for the project) captured the rationale and motivations driving this huge project:
"As part of Japan's effort to become a leader in the computer industry, the Institute for New Generation Computer Technology has launched a revolutionary ten-year plan for the development of large computer systems which will be applicable to knowledge information processing systems. These Fifth Generation computers will be built around the concepts of logic programming. In order to refute the accusation that Japan exploits knowledge from abroad without contributing any of its own, this project will stimulate original research and will make its results available to the international research community."

The term "fifth generation" was intended to convey the system as being a leap beyond existing machines. In the history of computing hardware, computers using vacuum tubes were called the first generation; transistors and diodes, the second; integrated circuits, the third; and those using microprocessors, the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs for added performance.
The project was to create the computer over a ten-year period, after which it was considered ended and investment in a new "sixth generation" project would begin. Opinions about its outcome are divided: either it was a failure, or it was ahead of its time.
== History ==
In the late 1960s till the early 1970s, there was much talk about "generations" of computer hardware — usually "three generations".
# First generation: Thermionic vacuum tubes. Mid-1940s. IBM pioneered the arrangement of vacuum tubes in pluggable modules. The IBM 650 was a first-generation computer.
# Second generation: Transistors. 1956. The era of miniaturization begins. Transistors are much smaller than vacuum tubes, draw less power, and generate less heat. Discrete transistors are soldered to circuit boards, with interconnections accomplished by stencil-screened conductive patterns on the reverse side. The IBM 7090 was a second-generation computer.
# Third generation: Integrated circuits (silicon chips containing multiple transistors). 1964. A pioneering example is the ACPX module used in the IBM 360/91, which, by stacking layers of silicon over a ceramic substrate, accommodated over 20 transistors per chip; the chips could be packed together onto a circuit board to achieve unheard-of logic densities. The IBM 360/91 was a hybrid second- and third-generation computer.
Omitted from this taxonomy is the "zeroth-generation" computer based on metal gears (such as the IBM 4077) or mechanical relays (such as the Mark I), and the post-third-generation computers based on Very Large Scale Integrated (VLSI) circuits.
There was also a parallel set of generations for software:
# First generation: Machine language.
# Second generation: Low-level programming languages such as Assembly language.
# Third generation: Structured high-level programming languages such as C, COBOL and FORTRAN.
# Fourth generation: Domain-specific high-level programming languages such as SQL (for database access) and TeX (for text formatting)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fifth generation computer」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.